Logo

An Introduction to Higher Mathematics

Small book cover: An Introduction to Higher Mathematics

An Introduction to Higher Mathematics
by

Publisher: Whitman College
Number of pages: 144

Description:
Contents: Logic (Logical Operations, De Morgan's Laws, Logic and Sets); Proofs (Direct Proofs, Existence proofs, Mathematical Induction, Indirect Proof); Number Theory (The Euclidean Algorithm, The Fundamental Theorem of Arithmetic); Functions (Injections and Surjections, Cardinality and Countability, Uncountability of the Reals).

Home page url

Download or read it online for free here:
Download link
(730KB, PDF)

Similar books

Book cover: Basic Concepts of MathematicsBasic Concepts of Mathematics
by - The Trillia Group
The book will help students complete the transition from purely manipulative to rigorous mathematics. It covers basic set theory, induction, quantifiers, functions and relations, equivalence relations, properties of the real numbers, fields, etc.
(12503 views)
Book cover: A Gentle Introduction to the Art of MathematicsA Gentle Introduction to the Art of Mathematics
by - Southern Connecticut State University
The point of this book is to help you with the transition from doing math at an elementary level (concerned mostly with solving problems) to doing math at an advanced level (which is much more concerned with axiomatic systems and proving statements).
(12373 views)
Book cover: An Inquiry-Based Introduction to ProofsAn Inquiry-Based Introduction to Proofs
by - Saint Michael's College
Introduction to Proofs is a Free undergraduate text. It is inquiry-based, sometimes called the Moore method or the discovery method. It consists of a sequence of exercises, statements for students to prove, along with a few definitions and remarks.
(6662 views)
Book cover: Proof in Mathematics: An IntroductionProof in Mathematics: An Introduction
by - Kew Books
This is a small (98 page) textbook designed to teach mathematics and computer science students the basics of how to read and construct proofs. The book takes a straightforward, no nonsense approach to explaining the core technique of mathematics.
(5572 views)