Logo

Relativistic Kinetic Theory: An Introduction

Small book cover: Relativistic Kinetic Theory: An Introduction

Relativistic Kinetic Theory: An Introduction
by

Publisher: arXiv
Number of pages: 30

Description:
We present a brief introduction to the relativistic kinetic theory of gases with emphasis on the underlying geometric and Hamiltonian structure of the theory. Our formalism starts with a discussion on the tangent bundle of a Lorentzian manifold of arbitrary dimension...

Home page url

Download or read it online for free here:
Download link
(220KB, PDF)

Similar books

Book cover: Lecture Notes in Statistical MechanicsLecture Notes in Statistical Mechanics
by - The J. Stefan Institute
These lectures cover classical and quantum statistical mechanics with some emphasis on classical spin systems. The author gives also an introduction to Bose condensation and superfluidity but he does not discuss phenomena specific to Fermi particles.
(10324 views)
Book cover: Statistical Mechanics and the Physics of the Many-Particle Model SystemsStatistical Mechanics and the Physics of the Many-Particle Model Systems
by - arXiv
The development of methods of quantum statistical mechanics is considered in light of their applications to quantum solid-state theory. We discuss fundamental problems of the physics of magnetic materials and methods of quantum theory of magnetism.
(11622 views)
Book cover: Fundamentals and New Frontiers of Bose-Einstein CondensationFundamentals and New Frontiers of Bose-Einstein Condensation
by - World Scientific Publishing Company
This book covers the fundamentals of and new developments in gaseous Bose Einstein condensation. It begins with a review of fundamental concepts and theorems, and introduces basic theories describing Bose-Einstein condensation (BEC)...
(10060 views)
Book cover: Statistical PhysicsStatistical Physics
by - University of Cambridge
This is an introductory course on Statistical Mechanics and Thermodynamics given to final year undergraduates. Topics: Fundamentals of Statistical Mechanics; Classical Gases; Quantum Gases; Classical Thermodynamics; Phase Transitions.
(12891 views)