**An Introduction to Mathematical Reasoning**

by Peter J. Eccles

**Publisher**: Cambridge University Press 2007**ISBN/ASIN**: B00AKE1PT6**Number of pages**: 364

**Description**:

The purpose of this book is to introduce the basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on helping the reader in understanding and constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory, topics which include many fundamental ideas which are part of the tool kit of any mathematician.

Download or read it online here:

**Download link**

(multiple PDF files)

## Similar books

**A Introduction to Proofs and the Mathematical Vernacular**

by

**Martin Day**

The book helps students make the transition from freshman-sophomore calculus to more proof-oriented upper-level mathematics courses. Another goal is to train students to read more involved proofs they may encounter in textbooks and journal articles.

(

**14803**views)

**An Inquiry-Based Introduction to Proofs**

by

**Jim Hefferon**-

**Saint Michael's College**

Introduction to Proofs is a Free undergraduate text. It is inquiry-based, sometimes called the Moore method or the discovery method. It consists of a sequence of exercises, statements for students to prove, along with a few definitions and remarks.

(

**4490**views)

**Proofs in Mathematics**

by

**Alexander Bogomolny**-

**Interactive Mathematics Miscellany and Puzzles**

I'll distinguish between two broad categories. The first is characterized by simplicity. In the second group the proofs will be selected mainly for their charm. Most of the proofs in this book should be accessible to a middle grade school student.

(

**6858**views)

**Practical Foundations of Mathematics**

by

**Paul Taylor**-

**Cambridge University Press**

It explains the basis of mathematical reasoning both in pure mathematics itself and in computer science. In addition to the formal logic, this volume examines the relationship between computer languages and plain English mathematical proofs.

(

**14048**views)