Logo

An Introduction to Mathematical Reasoning

Large book cover: An Introduction to Mathematical Reasoning

An Introduction to Mathematical Reasoning
by

Publisher: Cambridge University Press
ISBN/ASIN: B00AKE1PT6
Number of pages: 364

Description:
The purpose of this book is to introduce the basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on helping the reader in understanding and constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory, topics which include many fundamental ideas which are part of the tool kit of any mathematician.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: How To Write ProofsHow To Write Proofs
by - California State University, Fresno
Proofs are the heart of mathematics. What is the secret? The short answer is: there is no secret, no mystery, no magic. All that is needed is some common sense and a basic understanding of a few trusted and easy to understand techniques.
(7333 views)
Book cover: Proof in Mathematics: An IntroductionProof in Mathematics: An Introduction
by - Kew Books
This is a small (98 page) textbook designed to teach mathematics and computer science students the basics of how to read and construct proofs. The book takes a straightforward, no nonsense approach to explaining the core technique of mathematics.
(5020 views)
Book cover: Proofs and Concepts: the fundamentals of abstract mathematicsProofs and Concepts: the fundamentals of abstract mathematics
by - University of Lethbridge
This undergraduate textbook provides an introduction to proofs, logic, sets, functions, and other fundamental topics of abstract mathematics. It is designed to be the textbook for a bridge course that introduces undergraduates to abstract mathematics.
(10818 views)
Book cover: Fundamental Concepts of MathematicsFundamental Concepts of Mathematics
by - University of Massachusetts
Problem Solving, Inductive vs. Deductive Reasoning, An introduction to Proofs; Logic and Sets; Sets and Maps; Counting Principles and Finite Sets; Relations and Partitions; Induction; Number Theory; Counting and Uncountability; Complex Numbers.
(11475 views)