Logo

Theory and Applications of Lattice Point Methods for Binomial Ideals

Small book cover: Theory and Applications of Lattice Point Methods for Binomial Ideals

Theory and Applications of Lattice Point Methods for Binomial Ideals
by

Publisher: arXiv
Number of pages: 57

Description:
This is a survey of methods surrounding lattice point methods for binomial ideals. The exposition is aimed at students and researchers in algebra; it includes many examples, open problems, and elementary introductions to the motivations and background from outside of algebra.

Home page url

Download or read it online for free here:
Download link
(640KB, PDF)

Similar books

Book cover: Frobenius Splitting in Commutative AlgebraFrobenius Splitting in Commutative Algebra
by - arXiv
Frobenius splitting has inspired a vast arsenal of techniques in commutative algebra, algebraic geometry, and representation theory. The purpose of these lectures is to give a gentle introduction to Frobenius splitting for beginners.
(2538 views)
Book cover: Commutative Algebra and Noncommutative Algebraic GeometryCommutative Algebra and Noncommutative Algebraic Geometry
by - Cambridge University Press
The books cover birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, tilting theory, etc. These volumes reflect the lively interaction between the subjects.
(1424 views)
Book cover: Commutative AlgebraCommutative Algebra
by - University of Georgia
Contents: Introduction to Commutative Rings; Introduction to Modules; Ideals; Examples of Rings; Swan's Theorem; Localization; Noetherian Rings; Boolean rings; Affine algebras and the Nullstellensatz; The spectrum; Integral extensions; etc.
(5943 views)
Book cover: A Course In Commutative AlgebraA Course In Commutative Algebra
by - University of Illinois
This is a text for a basic course in commutative algebra, it should be accessible to those who have studied algebra at the beginning graduate level. The book should help the student reach an advanced level as quickly and efficiently as possible.
(13107 views)