Logo

Navier-Stokes Equations: On the Existence and the Search Method for Global Solutions

Large book cover: Navier-Stokes Equations: On the Existence and the Search Method for Global Solutions

Navier-Stokes Equations: On the Existence and the Search Method for Global Solutions
by

Publisher: MiC
ISBN/ASIN: 1456468510
ISBN-13: 9781456468514
Number of pages: 105

Description:
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional. We describe the method of seeking solution for these equations, which consists in moving along the gradient to this functional extremum.

Home page url

Download or read it online for free here:
Download link
(4.6MB, PDF)

Similar books

Book cover: Quantum Spin Systems on Infinite LatticesQuantum Spin Systems on Infinite Lattices
by - arXiv
These are the lecture notes for a one semester course at Leibniz University Hannover. The main aim of the course is to give an introduction to the mathematical methods used in describing discrete quantum systems consisting of infinitely many sites.
(2695 views)
Book cover: Mathematical Physics: Problems and SolutionsMathematical Physics: Problems and Solutions
by - Samara University Press
The present Proceedings is intended to be used by the students of physical and mechanical-mathematical departments of the universities, who are interested in acquiring a deeper knowledge of the methods of mathematical and theoretical physics.
(5811 views)
Book cover: Lie Theory and Special FunctionsLie Theory and Special Functions
by - Academic Press
The book studies the role played by special function theory in the formalism of mathematical physics. It demonstrates that special functions which arise in mathematical models are dictated by symmetry groups admitted by the models.
(8069 views)
Book cover: Random Matrix Models and Their ApplicationsRandom Matrix Models and Their Applications
by - Cambridge University Press
The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.
(10591 views)