**Navier-Stokes Equations: On the Existence and the Search Method for Global Solutions**

by Solomon I. Khmelnik

**Publisher**: MiC 2011**ISBN/ASIN**: 1456468510**ISBN-13**: 9781456468514**Number of pages**: 105

**Description**:

In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional. We describe the method of seeking solution for these equations, which consists in moving along the gradient to this functional extremum.

Download or read it online for free here:

**Download link**

(4.6MB, PDF)

## Similar books

**Differential Equations of Mathematical Physics**

by

**Max Lein**-

**arXiv**

These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.

(

**4349**views)

**Euclidean Random Matrices and Their Applications in Physics**

by

**A. Goetschy, S.E. Skipetrov**-

**arXiv**

We review the state of the art of the theory of Euclidean random matrices, focusing on the density of their eigenvalues. Both Hermitian and non-Hermitian matrices are considered and links with simpler random matrix ensembles are established.

(

**4038**views)

**Physics, Topology, Logic and Computation: A Rosetta Stone**

by

**John C. Baez, Mike Stay**-

**arXiv**

There is extensive network of analogies between physics, topology, logic and computation. In this paper we make these analogies precise using the concept of 'closed symmetric monoidal category'. We assume no prior knowledge of category theory.

(

**6112**views)

**LieART: A Mathematica Application for Lie Algebras and Representation Theory**

by

**Robert Feger, Thomas W. Kephart**-

**arXiv**

We present the Mathematica application LieART (Lie Algebras and Representation Theory) for computations in Lie Algebras and representation theory, such as tensor product decomposition and subalgebra branching of irreducible representations.

(

**5297**views)