Logo

Navier-Stokes Equations: On the Existence and the Search Method for Global Solutions

Large book cover: Navier-Stokes Equations: On the Existence and the Search Method for Global Solutions

Navier-Stokes Equations: On the Existence and the Search Method for Global Solutions
by

Publisher: MiC
ISBN/ASIN: 1456468510
ISBN-13: 9781456468514
Number of pages: 105

Description:
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional. We describe the method of seeking solution for these equations, which consists in moving along the gradient to this functional extremum.

Home page url

Download or read it online for free here:
Download link
(4.6MB, PDF)

Similar books

Book cover: Lectures on Nonlinear Waves And ShocksLectures on Nonlinear Waves And Shocks
by - Tata Institute Of Fundamental Research
Introduction to certain aspects of gas dynamics concentrating on some of the most important nonlinear problems, important not only from the engineering or computational point of view but also because they offer great mathematical challenges.
(7557 views)
Book cover: Differential Equations of Mathematical PhysicsDifferential Equations of Mathematical Physics
by - arXiv
These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.
(7602 views)
Book cover: Little Magnetic BookLittle Magnetic Book
by - arXiv
'Little Magnetic Book' is devoted to the spectral analysis of the magnetic Laplacian in various geometric situations. In particular the influence of the geometry on the discrete spectrum is analysed in many asymptotic regimes.
(5210 views)
Book cover: Foundations Of Potential TheoryFoundations Of Potential Theory
by - Springer
The present volume gives a systematic treatment of potential functions. It has a purpose to serve as an introduction for students and to provide the reader with the fundamentals of the subject, so that he may proceed immediately to the applications.
(5083 views)