Logo

Quantum Spin Systems on Infinite Lattices

Small book cover: Quantum Spin Systems on Infinite Lattices

Quantum Spin Systems on Infinite Lattices
by

Publisher: arXiv
Number of pages: 90

Description:
These are the lecture notes for a one semester course at Leibniz University Hannover. The main aim of the course is to give an introduction to the mathematical methods used in describing discrete quantum systems consisting of infinitely many sites. Such systems can be used, for example, to model some materials in condensed matter physics or lattice gases.

Home page url

Download or read it online for free here:
Download link
(890KB, PDF)

Similar books

Book cover: Lie Systems: Theory, Generalisations, and ApplicationsLie Systems: Theory, Generalisations, and Applications
by - arXiv
Lie systems form a class of systems of first-order ordinary differential equations whose general solutions can be described in terms of certain finite families of particular solutions and a set of constants, by means of a particular type of mapping.
(4551 views)
Book cover: Graph and Network Theory in Physics: A Short IntroductionGraph and Network Theory in Physics: A Short Introduction
by - arXiv
Text consisting of some of the main areas of research in graph theory applied to physics. It includes graphs in condensed matter theory, such as the tight-binding and the Hubbard model. It follows the study of graph theory and statistical physics...
(4598 views)
Book cover: Lectures on Three-Dimensional ElasticityLectures on Three-Dimensional Elasticity
by - Tata Institute of Fundamental Research
In this book a non-linear system of partial differential equations will be established as a mathematical model of elasticity. An energy functional will be established and existence results will be studied in the second chapter.
(4382 views)
Book cover: Lectures on Nonlinear Waves And ShocksLectures on Nonlinear Waves And Shocks
by - Tata Institute Of Fundamental Research
Introduction to certain aspects of gas dynamics concentrating on some of the most important nonlinear problems, important not only from the engineering or computational point of view but also because they offer great mathematical challenges.
(4357 views)