**Bernoulli Polynomials and Applications**

by Omran Kouba

**Publisher**: arXiv 2013**Number of pages**: 48

**Description**:

In this lecture notes we try to familiarize the audience with the theory of Bernoulli polynomials; we study their properties, and we give, with proofs and references, some of the most relevant results related to them. Several applications to these polynomials are presented, including a unified approach to the asymptotic expansion of the error term in many numerical quadrature formulae, and many new and sharp inequalities, that bound some trigonometric sums.

Download or read it online for free here:

**Download link**

(490KB, PDF)

## Similar books

**Special Functions and Their Symmetries: Postgraduate Course in Applied Analysis**

by

**Vadim Kuznetsov, Vladimir Kisil**-

**University of Leeds**

This text presents fundamentals of special functions theory and its applications in partial differential equations of mathematical physics. The course covers topics in harmonic, classical and functional analysis, and combinatorics.

(

**11480**views)

**Lectures on Topics in Analysis**

by

**Raghavan Narasimhan**-

**Tata Institute of Fundamental Research**

Topics covered: Differentiable functions in Rn; Manifolds; Vector bundles; Linear differential operators; Cauchy Kovalevski Theorem; Fourier transforms, Plancherel's theorem; Sobolev spaces Hm,p; Elliptic differential operators; etc.

(

**7552**views)

**Calculus and Differential Equations**

by

**John Avery**-

**Learning Development Institute**

The book places emphasis on Mathematics as a human activity and on the people who made it. From the table of contents: Historical background; Differential calculus; Integral calculus; Differential equations; Solutions to the problems.

(

**10653**views)

**Lecture Notes on the Theory of Distributions**

by

**Guenther Hoermann, Roland Steinbauer**-

**Universitaet Wien**

From the table of contents: 1. Test Functions and Distributions; 2. Differentiation, Differential Operators; 3. Basic Constructions; 4. Convolution; 5. Fourier Transform and Temperate Distributions; 6. Regularity; 7. Fundamental Solutions.

(

**5700**views)