Logo

How To Write Proofs by Larry W. Cusick

Small book cover: How To Write Proofs

How To Write Proofs
by

Publisher: California State University, Fresno

Description:
Proofs are the heart of mathematics. If you are a math major, then you must come to terms with proofs--you must be able to read, understand and write them. What is the secret? What magic do you need to know? The short answer is: there is no secret, no mystery, no magic. All that is needed is some common sense and a basic understanding of a few trusted and easy to understand techniques.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: An Inquiry-Based Introduction to ProofsAn Inquiry-Based Introduction to Proofs
by - Saint Michael's College
Introduction to Proofs is a Free undergraduate text. It is inquiry-based, sometimes called the Moore method or the discovery method. It consists of a sequence of exercises, statements for students to prove, along with a few definitions and remarks.
(11863 views)
Book cover: Proofs in MathematicsProofs in Mathematics
by - Interactive Mathematics Miscellany and Puzzles
I'll distinguish between two broad categories. The first is characterized by simplicity. In the second group the proofs will be selected mainly for their charm. Most of the proofs in this book should be accessible to a middle grade school student.
(14694 views)
Book cover: Handbook of Mathematical ProofHandbook of Mathematical Proof
by - American Mathematical Society
This text can be used for an intro to proofs course, or a reference in a proof-based course. By going through this handbook, you will learn all that is necessary to prove and use mathematical statements. This will take some work ...
(272 views)
Book cover: Fundamental Concepts of MathematicsFundamental Concepts of Mathematics
by - University of Massachusetts
Problem Solving, Inductive vs. Deductive Reasoning, An introduction to Proofs; Logic and Sets; Sets and Maps; Counting Principles and Finite Sets; Relations and Partitions; Induction; Number Theory; Counting and Uncountability; Complex Numbers.
(20301 views)