Logo

Topology by Curtis T. McMullen

Small book cover: Topology

Topology
by

Publisher: Harvard University
Number of pages: 90

Description:
Contents: Introduction; Background in set theory; Topology; Connected spaces; Compact spaces; Metric spaces; Normal spaces; Algebraic topology and homotopy theory; Categories and paths; Path lifting and covering spaces; Global topology: applications; Quotients, gluing and simplicial complexes; Galois theory of covering spaces; Free groups and graphs; Group presentations, amalgamation and gluing.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: The Convenient Setting of Global AnalysisThe Convenient Setting of Global Analysis
by - American Mathematical Society
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.
(12283 views)
Book cover: Exact Sequences in the Algebraic Theory of SurgeryExact Sequences in the Algebraic Theory of Surgery
by - Princeton University Press
One of the principal aims of surgery theory is to classify the homotopy types of manifolds using tools from algebra and topology. The algebraic approach is emphasized in this book, and it gives the reader a good overview of the subject.
(8628 views)
Book cover: ManifoldsManifolds
by - King's College London
From the table of contents: Manifolds (Elementary Topology and Definitions); The Tangent Space; Maps Between Manifolds; Vector Fields; Tensors; Differential Forms; Connections, Curvature and Metrics; Riemannian Manifolds.
(8628 views)
Book cover: Lecture Notes on Seiberg-Witten InvariantsLecture Notes on Seiberg-Witten Invariants
by - Springer
A streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure.
(8862 views)