**Topology**

by Curtis T. McMullen

**Publisher**: Harvard University 2013**Number of pages**: 90

**Description**:

Contents: Introduction; Background in set theory; Topology; Connected spaces; Compact spaces; Metric spaces; Normal spaces; Algebraic topology and homotopy theory; Categories and paths; Path lifting and covering spaces; Global topology: applications; Quotients, gluing and simplicial complexes; Galois theory of covering spaces; Free groups and graphs; Group presentations, amalgamation and gluing.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**The Convenient Setting of Global Analysis**

by

**Andreas Kriegl, Peter W. Michor**-

**American Mathematical Society**

This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.

(

**12283**views)

**Exact Sequences in the Algebraic Theory of Surgery**

by

**Andrew Ranicki**-

**Princeton University Press**

One of the principal aims of surgery theory is to classify the homotopy types of manifolds using tools from algebra and topology. The algebraic approach is emphasized in this book, and it gives the reader a good overview of the subject.

(

**8628**views)

**Manifolds**

by

**Neil Lambert**-

**King's College London**

From the table of contents: Manifolds (Elementary Topology and Definitions); The Tangent Space; Maps Between Manifolds; Vector Fields; Tensors; Differential Forms; Connections, Curvature and Metrics; Riemannian Manifolds.

(

**8628**views)

**Lecture Notes on Seiberg-Witten Invariants**

by

**John Douglas Moore**-

**Springer**

A streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure.

(

**8862**views)