**Hyperbolic Manifolds, Discrete Groups and Ergodic Theory**

by Curtis T. McMullen

**Publisher**: Harvard University 2011**Number of pages**: 118

**Description**:

Contents: Ergodic theory; Dynamics on hyperbolic surfaces; Orbit counting, equidistribution and arithmetic; Spectral theory; Mixing of unitary representations of SLnR; Amenability; The Laplacian; All unitary representations of PSL2(R); Kazhdan's property T; Ergodic theory at infinity of hyperbolic manifolds; Lattices: Dimension 1; Dimension 2; Lattices, norms and totally real fields; Dimension 3; Dimension 4, 5, 6; Higher rank dynamics on the circle; The discriminant-regulator paradox.

Download or read it online for free here:

**Download link**

(4.1MB, PDF)

## Similar books

**Dynamical Systems**

by

**Shlomo Sternberg**-

**OER Commons**

This book addresses the following topics: Iterations and fixed points; bifurcations; conjugacy; space and time averages; the contraction fixed point theorem; Hutchinson's theorem and fractal images; hyperbolicity; and symbolic dynamics.

(

**6397**views)

**Dynamics, Ergodic Theory, and Geometry**

by

**Boris Hasselblatt**-

**Cambridge University Press**

This book contains articles in several areas of dynamical systems that have recently experienced substantial progress. Some of the major surveys focus on symplectic geometry; smooth rigidity; hyperbolic, parabolic, and symbolic dynamics; etc.

(

**11172**views)

**Complex and Adaptive Dynamical Systems: A Primer**

by

**Claudius Gros**-

**arXiv**

This textbook covers a wide range of concepts, notions and phenomena of a truly interdisciplinary subject. Complex system theory deals with dynamical systems containing a very large number of variables, showing a plethora of emergent features.

(

**10230**views)

**Ordinary Differential Equations and Dynamical Systems**

by

**Gerald Teschl**-

**Universitaet Wien**

This book provides an introduction to ordinary differential equations and dynamical systems. We start with some simple examples of explicitly solvable equations. Then we prove the fundamental results concerning the initial value problem.

(

**11710**views)