Introduction to Machine Learning
by Alex Smola, S.V.N. Vishwanathan
Publisher: Cambridge University Press 2008
Number of pages: 234
Description:
Over the past two decades Machine Learning has become one of the mainstays of information technology and with that, a rather central, albeit usually hidden, part of our life. Smart data analysis will become even more pervasive as a necessary ingredient for technological progress.
Download or read it online for free here:
Download link
(10.3MB, PDF)
Similar books
Algorithms for Reinforcement Learning
by Csaba Szepesvari - Morgan and Claypool Publishers
We focus on those algorithms of reinforcement learning that build on the theory of dynamic programming. We give a comprehensive catalog of learning problems, describe the core ideas, followed by the discussion of their properties and limitations.
(8337 views)
by Csaba Szepesvari - Morgan and Claypool Publishers
We focus on those algorithms of reinforcement learning that build on the theory of dynamic programming. We give a comprehensive catalog of learning problems, describe the core ideas, followed by the discussion of their properties and limitations.
(8337 views)
Bayesian Reasoning and Machine Learning
by David Barber - Cambridge University Press
The book is designed for final-year undergraduate students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basics to advanced techniques within the framework of graphical models.
(23389 views)
by David Barber - Cambridge University Press
The book is designed for final-year undergraduate students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basics to advanced techniques within the framework of graphical models.
(23389 views)
Machine Learning for Data Streams
by Albert Bifet, et al. - The MIT Press
This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA, allowing readers to try out the techniques after reading the explanations.
(7099 views)
by Albert Bifet, et al. - The MIT Press
This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA, allowing readers to try out the techniques after reading the explanations.
(7099 views)
Introduction to Machine Learning for the Sciences
by Titus Neupert, et al. - arXiv.org
This is an introductory machine learning course specifically developed with STEM students in mind, written by the theoretical Condensed Matter Theory group at the University of Zurich. We discuss supervised, unsupervised, and reinforcement learning.
(3627 views)
by Titus Neupert, et al. - arXiv.org
This is an introductory machine learning course specifically developed with STEM students in mind, written by the theoretical Condensed Matter Theory group at the University of Zurich. We discuss supervised, unsupervised, and reinforcement learning.
(3627 views)