Logo

Introduction to Spectral Theory of Schrödinger Operators

Small book cover: Introduction to Spectral Theory of Schrödinger Operators

Introduction to Spectral Theory of Schrödinger Operators
by

Publisher: Vinnitsa State Pedagogical University
Number of pages: 112

Description:
Contents: A bit of quantum mechanics; Operators in Hilbert spaces; Spectral theorem of self-adjoint operators; Compact operators and the Hilbert-Schmidt theorem; Perturbation of discrete spectrum; Variational principles; One-dimensional Schroedinger operator; Periodic Schroedinger operators; etc.

Download or read it online for free here:
Download link
(700KB, PDF)

Similar books

Book cover: Invariance Theory, the Heat Equation and the Atiyah-Singer Index TheoremInvariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem
by - Publish or Perish Inc.
This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas and the Gauss-Bonnet theorem.
(5165 views)
Book cover: Lectures on Integrable Hamiltonian SystemsLectures on Integrable Hamiltonian Systems
by - arXiv
We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. This is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and systems with time-dependent parameters.
(4024 views)
Book cover: Mathematics for Physics: A Guided Tour for Graduate StudentsMathematics for Physics: A Guided Tour for Graduate Students
by - Cambridge University Press
This book provides a graduate-level introduction to the mathematics used in research in physics. It focuses on differential and integral equations, Fourier series, calculus of variations, differential geometry, topology and complex variables.
(12093 views)
Book cover: Mathemathical Methods of Theoretical PhysicsMathemathical Methods of Theoretical Physics
by - Edition Funzl
This book presents the course material for mathemathical methods of theoretical physics intended for an undergraduate audience. The author most humbly presents his own version of what is important for standard courses of contemporary physics.
(4750 views)