**Geometry of the Quintic**

by Jerry Shurman

**Publisher**: Wiley-Interscience 1997**ISBN/ASIN**: 0471130176**ISBN-13**: 9780471130178**Number of pages**: 208

**Description**:

The text demonstrates the use of general concepts by applying theorems from various areas in the context of one problem -- solving the quintic. This book helps students at the advanced undergraduate and beginning graduate levels to develop connections between the algebra, geometry, and analysis that they know, and to better appreciate the totality of what they have learned.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Galois Theory**

by

**Miles Reid**-

**University of Warwick**

The author discusses the problem of solutions of polynomial equations both in explicit terms and in terms of abstract algebraic structures. The course demonstrates the tools of abstract algebra as applied to a meaningful problem.

(

**10182**views)

**Class Field Theory**

by

**J. S. Milne**

Class field theory describes the abelian extensions of a local or global field in terms of the arithmetic of the field itself. These notes contain an exposition of abelian class field theory using the algebraic/cohomological approach.

(

**6211**views)

**Galois Theory: Lectures Delivered at the University of Notre Dame**

by

**Emil Artin**-

**University of Notre Dame**

The book deals with linear algebra, including fields, vector spaces, homogeneous linear equations, and determinants, extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, and more.

(

**986**views)

**Lectures On Galois Cohomology of Classical Groups**

by

**M. Kneser**-

**Tata Institute of Fundamental Research**

The main result is the Hasse principle for the one-dimensional Galois cohomology of simply connected classical groups over number fields. For most groups, this result is closely related to other types of Hasse principle.

(

**4809**views)