**Geometry of the Quintic**

by Jerry Shurman

**Publisher**: Wiley-Interscience 1997**ISBN/ASIN**: 0471130176**ISBN-13**: 9780471130178**Number of pages**: 208

**Description**:

The text demonstrates the use of general concepts by applying theorems from various areas in the context of one problem -- solving the quintic. This book helps students at the advanced undergraduate and beginning graduate levels to develop connections between the algebra, geometry, and analysis that they know, and to better appreciate the totality of what they have learned.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**The Elements of the Theory of Algebraic Numbers**

by

**Legh Wilber Reid**-

**The Macmillan company**

It has been my endeavor in this book to lead by easy stages a reader, entirely unacquainted with the subject, to an appreciation of some of the fundamental conceptions in the general theory of algebraic numbers. Many numerical examples are given.

(

**5767**views)

**Galois Theory**

by

**Miles Reid**-

**University of Warwick**

The author discusses the problem of solutions of polynomial equations both in explicit terms and in terms of abstract algebraic structures. The course demonstrates the tools of abstract algebra as applied to a meaningful problem.

(

**11221**views)

**Galois Theory: Lectures Delivered at the University of Notre Dame**

by

**Emil Artin**-

**University of Notre Dame**

The book deals with linear algebra, including fields, vector spaces, homogeneous linear equations, and determinants, extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, and more.

(

**1945**views)

**Lectures on Field Theory and Ramification Theory**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology, Bombay**

These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.

(

**6130**views)