**Topology Illustrated**

by Peter Saveliev

**Publisher**: Intelligent Perception 2014**Number of pages**: 301

**Description**:

The text follows the content of a fairly typical, two-semester, first course in topology. Some of the topics are: the shape of the universe, configuration spaces, digital image analysis, data analysis, social choice, and, of course, calculus. The text is appropriate for self-study.

Download or read it online for free here:

**Read online**

(online html)

## Similar books

**The Classification Theorem for Compact Surfaces**

by

**Jean Gallier, Dianna Xu**

In this book the authors present the technical tools needed for proving rigorously the classification theorem, give a detailed proof using these tools, and also discuss the history of the theorem and its various proofs.

(

**11802**views)

**Prerequisites in Algebraic Topology**

by

**Bjorn Ian Dundas**-

**NTNU**

This is not an introductory textbook in algebraic topology, these notes attempt to give an overview of the parts of algebraic topology, and in particular homotopy theory, which are needed in order to appreciate that side of motivic homotopy theory.

(

**7891**views)

**Lecture Notes on Motivic Cohomology**

by

**Carlo Mazza, Vladimir Voevodsky, Charles Weibel**-

**AMS**

This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings.

(

**6991**views)

**Residues and Duality**

by

**Robin Hartshorne**-

**Springer**

The main purpose of these notes is to prove a duality theorem for cohomology of quasi-coherent sheaves, with respect to a proper morphism of locally noetherian preschemes. Various such theorems are already known. Typical is the duality theorem ...

(

**2310**views)