**Topology Illustrated**

by Peter Saveliev

**Publisher**: Intelligent Perception 2014

**Description**:

The text follows the content of a fairly typical, two-semester, first course in topology. Some of the topics are: the shape of the universe, configuration spaces, digital image analysis, data analysis, social choice, and, of course, calculus. The text is appropriate for self-study.

Download or read it online for free here:

**Read online**

(online html)

## Similar books

**A Primer on Homotopy Colimits**

by

**Daniel Dugger**-

**University of Oregon**

This is an expository paper on homotopy colimits and homotopy limits. These are constructions which should arguably be in the toolkit of every modern algebraic topologist. Many proofs are avoided, or perhaps just sketched.

(

**5138**views)

**Introduction to Characteritic Classes and Index Theory**

by

**Jean-Pierre Schneiders**-

**Universidade de Lisboa**

This text deals with characteristic classes of real and complex vector bundles and Hirzebruch-Riemann-Roch formula. We will present a few basic but fundamental facts which should help the reader to gain a good idea of the mathematics involved.

(

**5460**views)

**E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra**

by

**J. P. May**-

**Springer**

The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.

(

**7553**views)

**Notes on the course Algebraic Topology**

by

**Boris Botvinnik**-

**University of Oregon**

Contents: Important examples of topological spaces; Constructions; Homotopy and homotopy equivalence; CW-complexes and homotopy; Fundamental group; Covering spaces; Higher homotopy groups; Fiber bundles; Suspension Theorem and Whitehead product; etc.

(

**5466**views)