**Proof in Mathematics: An Introduction**

by James Franklin, Albert Daoud

**Publisher**: Kew Books 2011**ISBN/ASIN**: 0646545094**ISBN-13**: 9780646545097**Number of pages**: 104

**Description**:

This is a small (98 page) textbook designed to teach mathematics and computer science students the basics of how to read and construct proofs. The book takes a straightforward, no nonsense approach to explaining the core technique of mathematics.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Proofs and Concepts: the fundamentals of abstract mathematics**

by

**Dave Witte Morris, Joy Morris**-

**University of Lethbridge**

This undergraduate textbook provides an introduction to proofs, logic, sets, functions, and other fundamental topics of abstract mathematics. It is designed to be the textbook for a bridge course that introduces undergraduates to abstract mathematics.

(

**12044**views)

**An Inquiry-Based Introduction to Proofs**

by

**Jim Hefferon**-

**Saint Michael's College**

Introduction to Proofs is a Free undergraduate text. It is inquiry-based, sometimes called the Moore method or the discovery method. It consists of a sequence of exercises, statements for students to prove, along with a few definitions and remarks.

(

**7476**views)

**An Introduction to Mathematical Reasoning**

by

**Peter J. Eccles**-

**Cambridge University Press**

This book introduces basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory.

(

**7840**views)

**A Gentle Introduction to the Art of Mathematics**

by

**Joseph Fields**-

**Southern Connecticut State University**

The point of this book is to help you with the transition from doing math at an elementary level (concerned mostly with solving problems) to doing math at an advanced level (which is much more concerned with axiomatic systems and proving statements).

(

**13311**views)