Logo

Proof in Mathematics: An Introduction

Large book cover: Proof in Mathematics: An Introduction

Proof in Mathematics: An Introduction
by

Publisher: Kew Books
ISBN/ASIN: 0646545094
ISBN-13: 9780646545097
Number of pages: 104

Description:
This is a small (98 page) textbook designed to teach mathematics and computer science students the basics of how to read and construct proofs. The book takes a straightforward, no nonsense approach to explaining the core technique of mathematics.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Fundamental Concepts of MathematicsFundamental Concepts of Mathematics
by - University of Massachusetts
Problem Solving, Inductive vs. Deductive Reasoning, An introduction to Proofs; Logic and Sets; Sets and Maps; Counting Principles and Finite Sets; Relations and Partitions; Induction; Number Theory; Counting and Uncountability; Complex Numbers.
(10139 views)
Book cover: Mathematical Reasoning: Writing and ProofMathematical Reasoning: Writing and Proof
by - Pearson Education, Inc.
'Mathematical Reasoning' is designed to be a text for the first course in the college mathematics curriculum that introduces students to the processes of constructing and writing proofs and focuses on the formal development of mathematics.
(7839 views)
Book cover: An Introduction to Higher MathematicsAn Introduction to Higher Mathematics
by - Whitman College
Contents: Logic (Logical Operations, De Morgan's Laws, Logic and Sets); Proofs (Direct Proofs, Existence proofs, Mathematical Induction); Number Theory (The Euclidean Algorithm); Functions (Injections and Surjections, Cardinality and Countability).
(9764 views)
Book cover: Proofs and Concepts: the fundamentals of abstract mathematicsProofs and Concepts: the fundamentals of abstract mathematics
by - University of Lethbridge
This undergraduate textbook provides an introduction to proofs, logic, sets, functions, and other fundamental topics of abstract mathematics. It is designed to be the textbook for a bridge course that introduces undergraduates to abstract mathematics.
(9859 views)