Logo

Introduction to Tensor Calculus

Small book cover: Introduction to Tensor Calculus

Introduction to Tensor Calculus
by

Publisher: University of Heidelberg
Number of pages: 53

Description:
This booklet contains an explanation about tensor calculus for students of physics and engineering with a basic knowledge of linear algebra. The focus lies mainly on acquiring an understanding of the principles and ideas underlying the concept of 'tensor'.

Home page url

Download or read it online for free here:
Download link
(330KB, PDF)

Similar books

Book cover: Quick Introduction to Tensor AnalysisQuick Introduction to Tensor Analysis
by - Samizdat Press
The author gives only a draft of tensor theory, he formulates definitions and theorems and gives basic ideas and formulas. Proving consistence of definitions, deriving formulas, proving theorems or completing details to proofs is left to the reader.
(14422 views)
Book cover: Introduction to Vectors and Tensors Volume 1: Linear and Multilinear AlgebraIntroduction to Vectors and Tensors Volume 1: Linear and Multilinear Algebra
by - Springer
This book presents the basics of vector and tensor analysis for science and engineering students. Volume 1 covers algebraic structures and a modern introduction to the algebra of vectors and tensors. Clear presentation of mathematical concepts.
(17706 views)
Book cover: Tensor AnalysisTensor Analysis
by - Princeton Univ Pr
The lecture notes for the first part of a one-term course on differential geometry given at Princeton in the spring of 1967. They are an expository account of the formal algebraic aspects of tensor analysis using both modern and classical notations.
(18143 views)
Book cover: Symbolic Tensor Calculus on Manifolds: a SageMath ImplementationSymbolic Tensor Calculus on Manifolds: a SageMath Implementation
by - arXiv.org
These lecture notes present a method for symbolic tensor calculus that runs on fully specified smooth manifolds (described by an atlas), that is not limited to a single coordinate chart or vector frame, and runs even on non-parallelizable manifolds.
(4007 views)