e-books in Deep Learning category
by Terence Parr, Jeremy Howard - arXiv.org , 2018
This paper is an attempt to explain all the matrix calculus you need in order to understand the training of deep neural networks. We assume no knowledge beyond what you learned in calculus 1, and provide links to help you refresh the necessary math.
(5585 views)
by Thomas Epelbaum - arXiv.org , 2017
This note presents in a technical though hopefully pedagogical way the three most common forms of neural network architectures: Feedforward, Convolutional and Recurrent. For each network, their fundamental building blocks are detailed.
(5979 views)
by LISA lab - University of Montreal , 2015
This book will introduce you to some of the most important deep learning algorithms and show you how to run them using Theano. Theano is a python library that makes writing deep learning models easy, and gives the option of training them on a GPU.
(8530 views)
by Juergen Schmidhuber - arXiv , 2014
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium.
(10530 views)
by Yoshua Bengio, Ian Goodfellow, Aaron Courville - MIT Press , 2014
This book can be useful for the university students learning about machine learning and the practitioners of machine learning, artificial intelligence, data-mining and data science aiming to better understand and take advantage of deep learning.
(17293 views)
by Michael Nielsen , 2014
Neural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you the core concepts behind neural networks and deep learning.
(10177 views)