**Algebraic and Geometric Methods in Enumerative Combinatorics**

by Federico Ardila

**Publisher**: arXiv 2014**Number of pages**: 143

**Description**:

The guiding principle was to focus on algebraic and geometric techniques that are useful towards the solution of enumerative problems. The main goal of this survey is to state clearly and concisely some of the most useful tools in algebraic and geometric enumeration, and to give many examples that quickly and concretely illustrate how to put these tools to use.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**Combinatory Analysis**

by

**Percy A. MacMahon**-

**Cambridge University Press**

The object of this work is to present an account of theorems in combinatory analysis which are of a perfectly general character, and to shew the connexion between them by as far as possible bringing them together as parts of a general doctrine ...

(

**7216**views)

**Combinatorial Maps: Tutorial**

by

**Dainis Zeps**-

**Latvian University**

Contents: Permutations; Combinatorial maps; The correspondence between combinatorial maps and graphs on surfaces; Map's mirror reflection and dual map; Multiplication of combinatorial maps; Normalized combinatorial maps; Geometrical interpretation...

(

**6951**views)

**Topics in Algebraic Combinatorics**

by

**Richard P. Stanley**-

**MIT**

Contents: Walks in graphs; Cubes and the Radon transform; Random walks; The Sperner property; Group actions on boolean algebras; Young diagrams and q-binomial coefficients; Enumeration under group action; A glimpse of Young tableaux; etc.

(

**9652**views)

**Notes on the Combinatorial Fundamentals of Algebra**

by

**Darij Grinberg**-

**arXiv.org**

This is a detailed survey, with rigorous and self-contained proofs, of some of the basics of elementary combinatorics and algebra, including the properties of finite sums, binomial coefficients, permutations and determinants.

(

**3111**views)