Logo

The Axiomatic Method by L. Henkin, P. Suppes, A. Tarski

Large book cover: The Axiomatic Method

The Axiomatic Method
by

Publisher: North Holland Publishing Company
ISBN/ASIN: B000MXJS4E
Number of pages: 508

Description:
The thirty-three papers in this volume constitute the proceedings of an international symposium on The axiomatic method, with special reference to geometry and physics. The volume naturally divides into three parts. Part I consists of fourteen papers on the foundations of geometry, Part II of fourteen papers on the foundations of physics, and Part III of five papers on general problems and applications of the axiomatic method.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Geometry, Topology and PhysicsGeometry, Topology and Physics
by - Technische Universitat Wien
From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.
(16505 views)
Book cover: Combinatorial and Computational GeometryCombinatorial and Computational Geometry
by - Cambridge University Press
This volume includes articles exploring geometric arrangements, polytopes, packing, covering, discrete convexity, geometric algorithms and their complexity, and the combinatorial complexity of geometric objects, particularly in low dimension.
(13476 views)
Book cover: Modern GeometryModern Geometry
by - University of South Carolina
This course is a study of modern geometry as a logical system based upon postulates and undefined terms. Projective geometry, theorems of Desargues and Pappus, transformation theory, affine geometry, Euclidean, non-Euclidean geometries, topology.
(12714 views)
Book cover: Topics in GeometryTopics in Geometry
by - University of St Andrews
Contents: Foundations; Linear groups; Isometries of Rn; Isometries of the line; Isometries of the plane; Isometries in 3 dimensions; Symmetry groups in the plane; Platonic solids; Finite symmetry groups of R3; Full finite symmetry groups in R3; etc.
(11453 views)