**Differential Geometry: A First Course in Curves and Surfaces**

by Theodore Shifrin

**Publisher**: University of Georgia 2015**Number of pages**: 127

**Description**:

Contents: Curves (Examples, Arclength Parametrization, Local Theory: Frenet Frame, Some Global Results), Surfaces: Local Theory (Parametrized Surfaces and the First Fundamental Form, The Gauss Map and the Second Fundamental Form, The Codazzi and Gauss Equations, Covariant Differentiation, Parallel Translation, and Geodesics) Surfaces: Further Topics (Holonomy and the Gauss-Bonnet Theorem, Hyperbolic Geometry, Surface Theory with Differential Forms, Calculus of Variations and Surfaces of Constant Mean Curvature).

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**A Course Of Differential Geometry**

by

**John Edward Campbell**-

**Clarendon Press**

Contents: Tensor theory; The ground form when n=2; Geodesics in two-way space; Two-way space as a locus in Euclidean space; Deformation of a surface and congruences; Curves in Euclidean space and on a surface; The ruled surface; Minimal surface; etc.

(

**5912**views)

**Differential Geometry Course Notes**

by

**Richard Koch**-

**University of Oregon**

These are differential geometry course notes. From the table of contents: Preface; Curves; Surfaces; Extrinsic Theory; The Covariant Derivative; The Theorema Egregium; The Gauss-Bonnet Theorem; Riemann's Counting Argument.

(

**11067**views)

**Introduction to Differential Geometry and General Relativity**

by

**Stefan Waner**

Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.

(

**21207**views)

**Topics in Differential Geometry**

by

**Peter W. Michor**-

**American Mathematical Society**

Fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry.

(

**10606**views)