Frobenius Splitting in Commutative Algebra
by Karen E. Smith, Wenliang Zhang
Publisher: arXiv 2014
Number of pages: 53
Description:
Frobenius splitting has inspired a vast arsenal of techniques in commutative algebra, algebraic geometry, and representation theory. The purpose of these lectures is to give a gentle introduction to Frobenius splitting, or more broadly 'Frobenius techniques,' for beginners.
Download or read it online for free here:
Download link
(580KB, PDF)
Similar books
Commutative Algebra
by Jacob Lurie, Akhil Mathew - Harvard University
Topics: Unique factorization; Basic definitions; Rings of holomorphic functions; R-modules; Ideals; Localization; SpecR and Zariski topology; The ideal class group; Dedekind domains; Hom and the tensor product; Exactness; Projective modules; etc.
(11941 views)
by Jacob Lurie, Akhil Mathew - Harvard University
Topics: Unique factorization; Basic definitions; Rings of holomorphic functions; R-modules; Ideals; Localization; SpecR and Zariski topology; The ideal class group; Dedekind domains; Hom and the tensor product; Exactness; Projective modules; etc.
(11941 views)
Lectures on Commutative Algebra
by Sudhir R. Ghorpade - Indian Institute of Technology, Bombay
These lecture notes attempt to give a rapid review of the rudiments of classical commutative algebra. Topics covered: rings and modules, Noetherian rings, integral extensions, Dedekind domains, and primary decomposition of modules.
(9894 views)
by Sudhir R. Ghorpade - Indian Institute of Technology, Bombay
These lecture notes attempt to give a rapid review of the rudiments of classical commutative algebra. Topics covered: rings and modules, Noetherian rings, integral extensions, Dedekind domains, and primary decomposition of modules.
(9894 views)
Commutative Algebra
by Keerthi Madapusi - Harvard University
Contents: Graded Rings and Modules; Flatness; Integrality: the Cohen-Seidenberg Theorems; Completions and Hensel's Lemma; Dimension Theory; Invertible Modules and Divisors; Noether Normalization and its Consequences; Quasi-finite Algebras; etc.
(12019 views)
by Keerthi Madapusi - Harvard University
Contents: Graded Rings and Modules; Flatness; Integrality: the Cohen-Seidenberg Theorems; Completions and Hensel's Lemma; Dimension Theory; Invertible Modules and Divisors; Noether Normalization and its Consequences; Quasi-finite Algebras; etc.
(12019 views)
A Primer of Commutative Algebra
by J.S. Milne
These notes prove the basic theorems in commutative algebra required for algebraic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses.
(10159 views)
by J.S. Milne
These notes prove the basic theorems in commutative algebra required for algebraic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses.
(10159 views)