Learning Deep Architectures for AI
by Yoshua Bengio
Publisher: Now Publishers 2009
ISBN/ASIN: 1601982941
ISBN-13: 9781601982940
Number of pages: 130
Description:
This monograph discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.
Download or read it online for free here:
Download link
(1.1MB, PDF)
Similar books

by Shai Shalev-Shwartz, Shai Ben-David - Cambridge University Press
This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.
(8292 views)

by Ratnadip Adhikari, R. K. Agrawal - arXiv
This work presents a concise description of some popular time series forecasting models used in practice, with their features. We describe three important classes of time series models, viz. the stochastic, neural networks and SVM based models.
(10501 views)

by Abdelhamid Mellouk, Abdennacer Chebira - InTech
Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.
(14736 views)

by Dimitri P. Bertsekas - Athena Scientific
The book considers large and challenging multistage decision problems, which can be solved by dynamic programming and optimal control, but their exact solution is computationally intractable. We discuss solution methods that rely on approximations.
(7518 views)