Logo

Complex Integration and Cauchy's Theorem

Large book cover: Complex Integration and Cauchy's Theorem

Complex Integration and Cauchy's Theorem
by

Publisher: Cambridge University Press
ISBN/ASIN: 0486488144
Number of pages: 100

Description:
This brief monograph by one of the great mathematicians of the early 20th century offers a single-volume compilation of propositions employed in proofs of Cauchy's theorem. Developing an arithmetical basis that avoids geometrical intuitions, Watson also provides a brief account of the various applications of the theorem to the evaluation of definite integrals.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Theory of Functions of a Complex VariableTheory of Functions of a Complex Variable
by - Cambridge University Press
The present treatise is an attempt to give a consecutive account of what may fairly be deemed the principal branches of the whole subject. The book may assist mathematicians, by lessening the labour of acquiring a proper knowledge of the subject.
(4026 views)
Book cover: Hyperbolic FunctionsHyperbolic Functions
by - John Wiley & Sons
College students who wish to know something of the hyperbolic trigonometry, will find it presented in a simple and comprehensive way in the first half of the work. Readers are then introduced to the more general trigonometry of the complex plane.
(11748 views)
Book cover: Lectures On The General Theory Of Integral FunctionsLectures On The General Theory Of Integral Functions
by - Chelsea Pub. Co.
These lectures give us, in the form of a number of elegant and illuminating theorems, the latest word of mathematical science on the subject of Integral Functions. They descend to details, they take us into the workshop of the working mathematician.
(5213 views)
Book cover: Theory of Functions of a Complex VariableTheory of Functions of a Complex Variable
by - D. C. Heath
Contents: Complex numbers and their geometrical representation; Rational functions of a complex variable; Theory of real variables and their functions; Single-valued analytic functions of a complex variable; General theory of functions; etc.
(3355 views)