Logo

Theoretical Physics IV: Statistical Physics

Small book cover: Theoretical Physics IV: Statistical Physics

Theoretical Physics IV: Statistical Physics
by

Publisher: Clausthal University of Technology
Number of pages: 271

Description:
From the table of contents: Entropy and Information; The ideal Boltzmann gas; Equilibrium; Thermodynamic Processes; The Language of Thermodynamics; The Language of Statistical Physics; Non-interacting Model Systems; Non-interacting particles.

Home page url

Download or read it online for free here:
Download link
(2.7MB, PDF)

Similar books

Book cover: Thermal and Statistical PhysicsThermal and Statistical Physics
by - Princeton University Press
A text on two related subjects: thermodynamics and statistical mechanics. Computer simulations and numerical calculations are used in a variety of contexts. The book brings some of the recent advances in research into the undergraduate curriculum.
(19515 views)
Book cover: Exactly Solved Models in Statistical MechanicsExactly Solved Models in Statistical Mechanics
by - Academic Press
This text explores the solution of two-dimensional lattice models. Topics include basic statistical mechanics, Ising models, mean field model, spherical model, ice-type models, corner transfer matrices, hard hexagonal models, and elliptic functions.
(12806 views)
Book cover: The basic paradoxes of statistical classical physics and quantum mechanicsThe basic paradoxes of statistical classical physics and quantum mechanics
by - arXiv
Statistical classical mechanics and quantum mechanics are two developed theories that contain a number of paradoxes. However the given paradoxes can be resolved within the framework of the existing physics, without introduction of new laws.
(14354 views)
Book cover: Bosonization of Interacting Fermions in Arbitrary DimensionsBosonization of Interacting Fermions in Arbitrary Dimensions
by - arXiv
In this book we describe a new non-perturbative approach to the fermionic many-body problem, which can be considered as a generalization to arbitrary dimensions of the well-known bosonization technique for one-dimensional fermions.
(9142 views)