Complexity Theory
by Johan Håstad
2008
Number of pages: 130
Description:
The main idea of the course has been to give the broad picture of modern complexity theory. To define the basic complexity classes, give some examples of each complexity class and to prove the most standard relations. The set of notes does not contain the amount of detail wanted from a text book. I have taken the liberty of skipping many boring details and tried to emphasize the ideas involved in the proofs. Probably in many places more details would be helpful and I would he grateful for hints on where this is the case. Most of the notes are at a fairly introductory level but some of the section contain more advanced material. This is in particular true for the section on pseudorandom number generators and the proof that IP = PSPACE. Anyone getting stuck in these parts of the notes should not be disappointed.
Download or read it online for free here:
Download link
(0.7MB, PDF)
Similar books
by Sanjeev Arora, Boaz Barak - Cambridge University Press
The book provides an introduction to basic complexity classes, lower bounds on resources required to solve tasks on concrete models such as decision trees or circuits, derandomization and pseudorandomness, proof complexity, quantum computing, etc.
(18321 views)
by Martin Tompa
Lecture notes for a graduate course on computational complexity taught at the University of Washington. Alternating Turing machines are introduced very early, and deterministic and nondeterministic Turing machines treated as special cases.
(10175 views)
by Tim Roughgarden - Stanford University
The two biggest goals of the course are: 1. Learn several canonical problems that have proved the most useful for proving lower bounds; 2. Learn how to reduce lower bounds for fundamental algorithmic problems to communication complexity lower bounds.
(6630 views)
by Herbert S. Wilf - AK Peters, Ltd.
An introductory textbook on the design and analysis of algorithms. Recursive algorithms are illustrated by Quicksort, FFT, and fast matrix multiplications. Algorithms in number theory are discussed with some applications to public key encryption.
(21935 views)