Logo

Differential Equations of Mathematical Physics

Small book cover: Differential Equations of Mathematical Physics

Differential Equations of Mathematical Physics
by

Publisher: arXiv
Number of pages: 198

Description:
These lecture notes are aimed at mathematicians and physicists alike. It is not meant as an introductory course to PDEs, but rather gives an overview of how to view and solve differential equations that are common in physics. Among others, I cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.

Home page url

Download or read it online for free here:
Download link
(2.1MB, PDF)

Similar books

Book cover: SolitonsSolitons
by - University of Cambridge
These lectures cover aspects of solitons with focus on applications to the quantum dynamics of supersymmetric gauge theories and string theory. The lectures consist of four sections, each dealing with a different soliton.
(8370 views)
Book cover: Navier-Stokes Equations: On the Existence and the Search Method for Global SolutionsNavier-Stokes Equations: On the Existence and the Search Method for Global Solutions
by - MiC
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.
(8861 views)
Book cover: Lectures on the Singularities of the Three-Body ProblemLectures on the Singularities of the Three-Body Problem
by - Tata Institute of Fundamental Research
From the table of contents: The differential equations of mechanics; The three-body problem : simple collisions (The n-body problem); The three-body problem: general collision (Stability theory of solutions of differential equations).
(7964 views)
Book cover: Euclidean Random Matrices and Their Applications in PhysicsEuclidean Random Matrices and Their Applications in Physics
by - arXiv
We review the state of the art of the theory of Euclidean random matrices, focusing on the density of their eigenvalues. Both Hermitian and non-Hermitian matrices are considered and links with simpler random matrix ensembles are established.
(6764 views)