**Extremes and Recurrence in Dynamical Systems**

by Valerio Lucarini, et al.

**Publisher**: arXiv 2016**ISBN/ASIN**: B01DNVSJ32**Number of pages**: 305

**Description**:

This book provides a comprehensive introduction for the study of extreme events in the context of dynamical systems. The introduction provides a broad overview of the interdisciplinary research area of extreme events, underlining its relevance for mathematics, natural sciences, engineering, and social sciences.

Download or read it online for free here:

**Download link**

(5.5MB, PDF)

## Similar books

**Discrete Dynamical Systems**

by

**Arild Wikan**-

**Bookboon**

This book covers important topics like stability, hyperbolicity, bifurcation theory and chaos, topics which are essential to understand the behavior of nonlinear discrete dynamical systems. The theory is illuminated by examples and exercises.

(

**8453**views)

**Local Theory of Holomorphic Foliations and Vector Fields**

by

**Julio C. Rebelo, Helena Reis**-

**arXiv**

Informal lecture notes intended for graduate students about the standard local theory of holomorphic foliations and vector fields. Though the material presented here is well-known some of the proofs differ slightly from the classical arguments.

(

**10006**views)

**Definitions, Solved and Unsolved Problems, Conjectures, and Theorems in Number Theory and Geometry**

by

**Florentin Smarandache**-

**Amer Research Pr**

A collection of definitions, questions, and theorems such as Smarandache type conjectures, problems, numerical bases, T-numbers, progressions, series, functions, Non-Euclidean geometries, paradoxes, linguistic tautologies, and more.

(

**17922**views)

**The Hopf Bifurcation and Its Applications**

by

**J. E. Marsden, M. McCracken**-

**Springer**

The goal of these notes is to give a reasonably complete, although not exhaustive, discussion of what is commonly referred to as the Hopf bifurcation with applications to specific problems, including stability calculations.

(

**14216**views)