**An Introduction to Real Analysis**

by John K. Hunter

**Publisher**: University of California Davis 2014**Number of pages**: 305

**Description**:

These are some notes on introductory real analysis. They cover the properties of the real numbers, sequences and series of real numbers, limits of functions, continuity, differentiability, sequences and series of functions, and Riemann integration.

Download or read it online for free here:

**Download link**

(2.5MB, PDF)

## Similar books

**Mathematical Analysis I**

by

**Elias Zakon**-

**The Trillia Group**

Topics include metric spaces, convergent sequences, open and closed sets, function limits and continuity, sequences and series of functions, compact sets, power series, Taylor's theorem, differentiation and integration, total variation, and more.

(

**16689**views)

**The Foundations of Analysis**

by

**Larry Clifton**-

**arXiv**

This is a detailed introduction to the real number system from a categorical perspective. We begin with the categorical definition of the natural numbers, review the Eudoxus theory of ratios, and then define the positive real numbers categorically.

(

**8576**views)

**Theory of Functions of a Real Variable**

by

**Shlomo Sternberg**

The topology of metric spaces, Hilbert spaces and compact operators, the Fourier transform, measure theory, the Lebesgue integral, the Daniell integral, Wiener measure, Brownian motion and white noise, Haar measure, Banach algebras, etc.

(

**35297**views)

**Homeomorphisms in Analysis**

by

**Casper Goffman, at al.**-

**American Mathematical Society**

This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.

(

**15914**views)