**An Introduction to Asymptotic Analysis**

by Simon J.A. Malham

**Publisher**: Heriot-Watt University 2010**Number of pages**: 56

**Description**:

From the table of contents: Order notation; Perturbation methods; Asymptotic series; Laplace integrals (Laplace's method, Watson's lemma); Method of stationary phase; Method of steepest descents; Bibliography; Notes; Exam formula sheet; etc.

Download or read it online for free here:

**Download link**

(630KB, PDF)

## Similar books

**Theory of the Integral**

by

**Stanislaw Saks**-

**Polish Mathematical Society**

Covering all the standard topics, the author begins with a discussion of the integral in an abstract space, additive classes of sets, measurable functions, and integration of sequences of functions. Succeeding chapters cover Caratheodory measure.

(

**16713**views)

**Advanced Calculus and Analysis**

by

**Ian Craw**-

**University of Aberdeen**

Introductory calculus course, with some leanings to analysis. It covers sequences, monotone convergence, limits, continuity, differentiability, infinite series, power series, differentiation of functions of several variables, and multiple integrals.

(

**29876**views)

**Nonstandard Analysis**

by

**J. Ponstein**

This book is concerned with an attempt to introduce the infinitesimals and the other 'nonstandard' numbers in a naive, simpleminded way. Nevertheless, the resulting theory is hoped to be mathematically sound, and to be complete within obvious limits.

(

**12991**views)

**Jacobi Operators and Complete Integrable Nonlinear Lattices**

by

**Gerald Teschl**-

**American Mathematical Society**

Introduction and a reference to spectral and inverse spectral theory of Jacobi operators and applications of these theories to the Toda and Kac-van Moerbeke hierarchy. It covers second order difference equations, self-adjoint operators, etc.

(

**13387**views)