Logo

An Introductory Course Of Mathematical Analysis

Large book cover: An Introductory Course Of Mathematical Analysis

An Introductory Course Of Mathematical Analysis
by

Publisher: Cambridge University Press
Number of pages: 268

Description:
Originally published in 1926, this textbook was aimed at first-year undergraduates studying physics and chemistry, to help them become acquainted with the concepts and processes of differentiation and integration. Notably, a prominence is given to inequalities and more specifically to inequations.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Set Theoretic Real AnalysisSet Theoretic Real Analysis
by - Heldermann Verlag
This text surveys the recent results that concern real functions whose statements involve the use of set theory. The choice of the topics follows the author's personal interest in the subject. Most of the results are left without the proofs.
(16096 views)
Book cover: Fundamentals of AnalysisFundamentals of Analysis
by - Macquarie University
Set of notes suitable for an introduction to the basic ideas in analysis: the number system, sequences and limits, series, functions and continuity, differentiation, the Riemann integral, further treatment of limits, and uniform convergence.
(17911 views)
Book cover: Real Analysis for Graduate Students: Measure and Integration TheoryReal Analysis for Graduate Students: Measure and Integration Theory
by - CreateSpace
Nearly every Ph.D. student in mathematics needs to take a preliminary or qualifying examination in real analysis. This book provides the necessary tools to pass such an examination. The author presents the material in as clear a fashion as possible.
(14210 views)
Book cover: Introduction to Lebesgue IntegrationIntroduction to Lebesgue Integration
by - Macquarie University
An introduction to some of the basic ideas in Lebesgue integration with the minimal use of measure theory. Contents: the real numbers and countability, the Riemann integral, point sets, the Lebesgue integral, monotone convergence theorem, etc.
(16922 views)