Logo

Manifolds: Current Research Areas

Small book cover: Manifolds: Current Research Areas

Manifolds: Current Research Areas
by

Publisher: InTech
ISBN-13: 9789535128724
Number of pages: 158

Description:
Differential geometry is a very active field of research and has many applications to areas such as physics and gravity, for example. The papers in this book cover a number of subjects which will be of interest to workers in these areas.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Principles of Differential GeometryPrinciples of Differential Geometry
by - viXra
A collection of notes about differential geometry prepared as part of tutorials about topics and applications related to tensor calculus. They can be used as a reference for a first course on the subject or as part of a course on tensor calculus.
(5683 views)
Book cover: Discrete Differential Geometry: An Applied IntroductionDiscrete Differential Geometry: An Applied Introduction
by - Columbia University
This new and elegant area of mathematics has exciting applications, as this text demonstrates by presenting practical examples in geometry processing (surface fairing, parameterization, and remeshing) and simulation (of cloth, shells, rods, fluids).
(13191 views)
Book cover: Lectures on Fibre Bundles and Differential GeometryLectures on Fibre Bundles and Differential Geometry
by - Tata Institute of Fundamental Research
From the table of contents: Differential Calculus; Differentiable Bundles; Connections on Principal Bundles; Holonomy Groups; Vector Bundles and Derivation Laws; Holomorphic Connections (Complex vector bundles, Almost complex manifolds, etc.).
(9268 views)
Book cover: Exterior Differential Systems and Euler-Lagrange Partial Differential EquationsExterior Differential Systems and Euler-Lagrange Partial Differential Equations
by - University Of Chicago Press
The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.
(15933 views)