Logo

Topics in dynamics I: Flows

Small book cover: Topics in dynamics I: Flows

Topics in dynamics I: Flows
by

Publisher: Princeton University Press
ISBN/ASIN: 0691080801
ISBN-13: 9780691080802
Number of pages: 122

Description:
These are the lecture notes for the first term of a course on differential equations, given in Fine Hall the autumn of 1968. The text covers differential calculus, Picard's method, the local structure of vector fields, sums and Lie products of vector fields, self-adjoint operators on Hilbert space, commutative multiplicity theory, extensions of Hermitean operators, sums and Lie products of self-adjoint operators.

Home page url

Download or read it online for free here:
Download link
(2.7MB, PDF)

Similar books

Book cover: Computational Mathematics for Differential EquationsComputational Mathematics for Differential Equations
by
This is a manual on solving problems in computational mathematics. The book is intended primarily for engineering students, but may also prove useful for economics students, graduate engineers, and postgraduate students in the applied sciences.
(15359 views)
Book cover: Differential EquationsDifferential Equations
by - J. Wiley
The differential equation must necessarily at first be viewed in connection with a 'primitive', from which it might have been obtained by the direct process, and the solution consists in the discovery of such a primitive, when it exists...
(9410 views)
Book cover: Differential Equations From The Algebraic StandpointDifferential Equations From The Algebraic Standpoint
by - The American Mathematical Society
We shall be concerned, in this monograph, with systems of differential equations, ordinary or partial, which are algebraic in the unknowns and their derivatives. The algebraic side of the theory of such systems seems is developed in this book.
(5994 views)
Book cover: Why the Boundary of a Round Drop Becomes a Curve of Order FourWhy the Boundary of a Round Drop Becomes a Curve of Order Four
by - American Mathematical Society
This book concerns the problem of evolution of a round oil spot surrounded by water when oil is extracted from a well inside the spot. It turns out that the boundary of the spot remains an algebraic curve of degree four in the course of evolution.
(14390 views)