**Random Matrix Theory, Interacting Particle Systems and Integrable Systems**

by Percy Deift, Peter Forrester (eds)

**Publisher**: Cambridge University Press 2014**ISBN-13**: 9781107079922**Number of pages**: 528

**Description**:

Random matrix theory is at the intersection of linear algebra, probability theory and integrable systems, and has a wide range of applications in physics, engineering, multivariate statistics and beyond. The book contains review articles and research contributions on all these topics, in addition to other core aspects of random matrix theory such as integrability and free probability theory.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Determinants and Matrices**

by

**R. KochendÃ¶rfer**-

**Teubner**

Basic methods and concepts are introduced. From the table of contents: Preliminaries; Determinants; Matrices; Vector spaces. Rank of a matrix; Linear Spaces; Hermitian/Quadratic forms; More about determinants and matrices; Similarity.

(

**14882**views)

**Circulants**

by

**Alun Wyn-jones**

The goal of this book is to describe circulants in an algebraic context. It oscillates between the point of view of circulants as a commutative algebra, and the concrete point of view of circulants as matrices with emphasis on their determinants.

(

**15208**views)

**Matrices**

by

**Shmuel Friedland**-

**University of Illinois at Chicago**

From the table of contents: Domains, Modules and Matrices; Canonical Forms for Similarity; Functions of Matrices and Analytic Similarity; Inner product spaces; Elements of Multilinear Algebra; Nonnegative matrices; Convexity.

(

**14765**views)

**Matrix Analysis and Algorithms**

by

**Andrew Stuart, Jochen Voss**-

**CaltechAUTHORS**

An introduction to matrix analysis, and to the basic algorithms of numerical linear algebra. Contents: Vector and Matrix Analysis; Matrix Factorisations; Stability and Conditioning; Complexity of Algorithms; Systems of Linear Equations; etc.

(

**6115**views)