The Place of Partial Differential Equations in Mathematical Physics

Large book cover: The Place of Partial Differential Equations in Mathematical Physics

The Place of Partial Differential Equations in Mathematical Physics

Publisher: Patna University
Number of pages: 64

The chief reason for my choosing 'The place of partial differential equations in Mathematical Physics' as the subject for these lectures is my wish to inspire in my audience a love for Mathematics. Before entering into details, however, I shall give a brief historical account of the application of Mathematics to natural phenomena.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Classical and Quantum Mechanics via Lie algebrasClassical and Quantum Mechanics via Lie algebras
by - arXiv
This book presents classical, quantum, and statistical mechanics in an algebraic setting, thereby introducing mathematicians, physicists, and engineers to the ideas relating classical and quantum mechanics with Lie algebras and Lie groups.
Book cover: Neutrosophic Physics: More Problems, More SolutionsNeutrosophic Physics: More Problems, More Solutions
by - North-European Scientific Publishers
Neutrosophic logics is one of the promising research instruments, which could be successfully applied by a theoretical physicist. Neutrosophic logics states that neutralities may be between any physical states, or states of space-time.
Book cover: Lectures on Integrable Hamiltonian SystemsLectures on Integrable Hamiltonian Systems
by - arXiv
We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. This is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and systems with time-dependent parameters.
Book cover: Clifford Algebra, Geometric Algebra, and ApplicationsClifford Algebra, Geometric Algebra, and Applications
by - arXiv
These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.