Logo

Toposes, Triples and Theories

Large book cover: Toposes, Triples and Theories

Toposes, Triples and Theories
by

Publisher: Springer-Verlag
ISBN/ASIN: 0387961151
ISBN-13: 9780387961156
Number of pages: 302

Description:
As its title suggests, this book is an introduction to three ideas and the connections between them. Chapter 1 is an introduction to category theory which develops the basic constructions in categories needed for the rest of the book. Chapters 2, 3 and 4 introduce each of the three topics of the title and develop them independently up to a certain point. We assume that the reader is familiar with concepts typically developed in first-year graduate courses, such as group, ring, topological space, and so on.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Category TheoryCategory Theory
- Wikibooks
This book is an introduction to category theory, written for those who have some understanding of one or more branches of abstract mathematics, such as group theory, analysis or topology. It contains examples drawn from various branches of math.
(10556 views)
Book cover: Banach Modules and Functors on Categories of Banach SpacesBanach Modules and Functors on Categories of Banach Spaces
by - Marcel Dekker Inc
This book is the final outgrowth of a sequence of seminars about functors on categories of Banach spaces (held 1971 - 1975) and several doctoral dissertations. It has been written for readers with a general background in functional analysis.
(9075 views)
Book cover: Category Theory: A Gentle IntroductionCategory Theory: A Gentle Introduction
by - Logic Matters
I hope that what is here may prove useful to others starting to get to grips with category theory. This text is intended to be relatively accessible; in particular, it presupposes rather less mathematical background than some texts on categories.
(5840 views)
Book cover: Mixed MotivesMixed Motives
by - American Mathematical Society
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.
(13086 views)