Logo

Linear Partial Differential Equations and Fourier Theory

Large book cover: Linear Partial Differential Equations and Fourier Theory

Linear Partial Differential Equations and Fourier Theory
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521136598
ISBN-13: 9780521136594
Number of pages: 619

Description:
This is a textbook for an introductory course on linear partial differential equations and initial/boundary value problems. It also provides a mathematically rigorous introduction to basic Fourier analysis, which is the main tool used to solve linear PDEs in Cartesian coordinates. Finally, it introduces basic functional analysis. This is necessary to rigorously characterize the convergence of Fourier series, and also to discuss eigenfunctions for linear differential operators.

Download or read it online for free here:
Download link
(13MB, PDF)

Similar books

Book cover: Lectures on Mean Periodic FunctionsLectures on Mean Periodic Functions
by - Tata Institute of Fundamental Research
Mean periodic functions are a generalization of periodic functions. The book considers questions such as Fourier-series, harmonic analysis, the problems of uniqueness, approximation and quasi-analyticity, as problems on mean periodic functions.
(7330 views)
Book cover: Harmonic AnalysisHarmonic Analysis
by - University of Kentucky
These notes are intended for a course in harmonic analysis on Rn for graduate students. The background for this course is a course in real analysis which covers measure theory and the basic facts of life related to Lp spaces.
(7667 views)
Book cover: Notes on Harmonic AnalysisNotes on Harmonic Analysis
by
Tutorial discussing some of the numerical aspects of practical harmonic analysis. Topics include Historical Background, Fourier Series and Integral Approximations, Convergence Improvement, Differentiation of Fourier Series and Sigma Factors, etc.
(8690 views)
Book cover: Harmonic Function TheoryHarmonic Function Theory
by - Springer
A book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the text. The authors have taken care to motivate concepts and simplify proofs.
(11722 views)