Linear Partial Differential Equations and Fourier Theory
by Marcus Pivato
Publisher: Cambridge University Press 2005
ISBN/ASIN: 0521136598
ISBN-13: 9780521136594
Number of pages: 619
Description:
This is a textbook for an introductory course on linear partial differential equations and initial/boundary value problems. It also provides a mathematically rigorous introduction to basic Fourier analysis, which is the main tool used to solve linear PDEs in Cartesian coordinates. Finally, it introduces basic functional analysis. This is necessary to rigorously characterize the convergence of Fourier series, and also to discuss eigenfunctions for linear differential operators.
Download or read it online for free here:
Download link
(13MB, PDF)
Similar books

by J.P. Kahane - Tata Institute of Fundamental Research
Mean periodic functions are a generalization of periodic functions. The book considers questions such as Fourier-series, harmonic analysis, the problems of uniqueness, approximation and quasi-analyticity, as problems on mean periodic functions.
(7925 views)

by J. Delsarte - Tata Institute of Fundamental Research
Subjects treated: transmutations of singular differential operators of the second order in the real case; new results on the theory of mean periodic functions; proof of the two-radius theorem, which is the converse of Gauss's classical theorem.
(7488 views)

by Leif Mejlbro - BookBoon
This volume gives some guidelines for solving problems in the theories of Fourier series and Systems of Differential Equations and eigenvalue problems. It can be used as a supplement to the textbooks in which one can find all the necessary proofs.
(11814 views)

by George Benthien
Tutorial discussing some of the numerical aspects of practical harmonic analysis. Topics include Historical Background, Fourier Series and Integral Approximations, Convergence Improvement, Differentiation of Fourier Series and Sigma Factors, etc.
(9418 views)