**The Theory of Lie Derivatives and Its Applications**

by Kentaro Yano

**Publisher**: North Holland Publishing Co. 1955**Number of pages**: 321

**Description**:

This is an advanced treatment of topics in differential geometry. The topics include: Spaces with a non-vanishing curvature tensor that admit a group of automorphisms of the maximum order; Groups of transformations in generalized spaces; The study of global properties of the groups of motions in a compact orientable Riemannian space; Lie derivatives in an almost complex space.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Notes on Symmetric Spaces**

by

**Jonathan Holland, Bogdan Ion**-

**arXiv**

Contents: Affine connections and transformations; Symmetric spaces; Orthogonal symmetric Lie algebras; Examples; Noncompact symmetric spaces; Compact semisimple Lie groups; Hermitian symmetric spaces; Classification of real simple Lie algebras.

(

**9505**views)

**Projective Differential Geometry Of Curves And Surfaces**

by

**Ernest Preston Lane**-

**The University Of Chicago Press**

Projective Differential Geometry is largely a product of the first three decades of the twentieth century. The theory has been developed in five or more different languages, by three or four well-recognized methods, in various and sundry notations.

(

**5536**views)

**Exterior Differential Systems and Euler-Lagrange Partial Differential Equations**

by

**R. Bryant, P. Griffiths, D. Grossman**-

**University Of Chicago Press**

The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.

(

**17799**views)

**Algebraic geometry and projective differential geometry**

by

**Joseph M. Landsberg**-

**arXiv**

Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, and more.

(

**16265**views)