Entropy and Information Theory
by Robert M. Gray
Publisher: Springer 2008
ISBN/ASIN: 1441979697
Number of pages: 313
Description:
This book is devoted to the theory of probabilistic information measures and their application to coding theorems for information sources and noisy channels. The eventual goal is a general development of Shannon's mathematical theory of communication, but much of the space is devoted to the tools and methods required to prove the Shannon coding theorems. This is the only up-to-date treatment of traditional information theory emphasizing ergodic theory.
Download or read it online for free here:
Download link
(1.5MB, PDF)
Similar books
Information and Coding
by Karl Petersen - AMS
The aim is to review the many facets of information, coding, and cryptography, including their uses throughout history and their mathematical underpinnings. Prerequisites included high-school mathematics and willingness to deal with unfamiliar ideas.
(6077 views)
by Karl Petersen - AMS
The aim is to review the many facets of information, coding, and cryptography, including their uses throughout history and their mathematical underpinnings. Prerequisites included high-school mathematics and willingness to deal with unfamiliar ideas.
(6077 views)
Information Theory, Excess Entropy and Statistical Complexity
by David Feldman - College of the Atlantic
This e-book is a brief tutorial on information theory, excess entropy and statistical complexity. From the table of contents: Background in Information Theory; Entropy Density and Excess Entropy; Computational Mechanics.
(14068 views)
by David Feldman - College of the Atlantic
This e-book is a brief tutorial on information theory, excess entropy and statistical complexity. From the table of contents: Background in Information Theory; Entropy Density and Excess Entropy; Computational Mechanics.
(14068 views)
Algorithmic Information Theory
by Peter D. Gruenwald, Paul M.B. Vitanyi - CWI
We introduce algorithmic information theory, also known as the theory of Kolmogorov complexity. We explain this quantitative approach to defining information and discuss the extent to which Kolmogorov's and Shannon's theory have a common purpose.
(10749 views)
by Peter D. Gruenwald, Paul M.B. Vitanyi - CWI
We introduce algorithmic information theory, also known as the theory of Kolmogorov complexity. We explain this quantitative approach to defining information and discuss the extent to which Kolmogorov's and Shannon's theory have a common purpose.
(10749 views)
Data Compression
- Wikibooks
Data compression is useful in some situations because 'compressed data' will save time (in reading and on transmission) and space if compared to the unencoded information it represent. In this book, we describe the decompressor first.
(9626 views)
- Wikibooks
Data compression is useful in some situations because 'compressed data' will save time (in reading and on transmission) and space if compared to the unencoded information it represent. In this book, we describe the decompressor first.
(9626 views)