A Course of Modern Analysis
by E. T. Whittaker, G. N. Watson
Publisher: Cambridge University Press 1920
Number of pages: 608
Description:
This classic text has entered and held the field as the standard book on the applications of analysis to the transcendental functions. The authors explain the methods of modern analysis in the first part of the book and then proceed to a detailed discussion of the transcendental function, unhampered by the necessity of continually proving new theorems for special applications. In this way the authors have succeeded in being rigorous without imposing on the reader the mass of detail that so often tends to make a rigorous demonstration tedious. Researchers and students will find this book as valuable as ever.
Download or read it online for free here:
Download link
(multiple formats)
Similar books

by Eckhard Hitzer - arXiv
This paper treats the fundamentals of the multivector differential calculus part of geometric calculus. The multivector differential is introduced, followed by the multivector derivative and the adjoint of multivector functions.
(12082 views)

by Raghavan Narasimhan - Tata Institute of Fundamental Research
Topics covered: Differentiable functions in Rn; Manifolds; Vector bundles; Linear differential operators; Cauchy Kovalevski Theorem; Fourier transforms, Plancherel's theorem; Sobolev spaces Hm,p; Elliptic differential operators; etc.
(12786 views)

by N. M. Beskin
This text introduces the interesting and valuable concept of continued fractions. Contents: Two Historical Puzzles; Formation of Continued Fractions; Convergents; Non-terminating Continued Fractions; Approximation of Real Numbers.
(16549 views)

by Sean Mauch - Caltech
Advanced mathematical methods for scientists and engineers, it contains material on calculus, functions of a complex variable, ordinary differential equations, partial differential equations and the calculus of variations.
(20807 views)