Logo

Hilbert Space Methods for Partial Differential Equations

Large book cover: Hilbert Space Methods for Partial Differential Equations

Hilbert Space Methods for Partial Differential Equations
by

Publisher: Pitman
ISBN/ASIN: 0273084402
ISBN-13: 9780273084402
Number of pages: 208

Description:
The text for beginning graduate students of mathematics, engineering, and the physical sciences. The book covers elements of Hilbert space, distributions and Sobolev spaces, boundary value problems, first order evolution equations, implicit evolution equations, second order evolution equations, optimization and approximation topics.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Lecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanicsLecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanics
by - arXiv
A graduate-level introduction to C*-algebras, Hilbert C*-modules, vector bundles, and induced representations of groups and C*-algebras, with applications to quantization theory, phase space localization, and configuration space localization.
(14263 views)
Book cover: Linear Functional AnalysisLinear Functional Analysis
by - Macquarie University
An introduction to the basic ideas in linear functional analysis: metric spaces; connectedness, completeness and compactness; normed vector spaces; inner product spaces; orthogonal expansions; linear functionals; linear transformations; etc.
(17019 views)
Book cover: Functional AnalysisFunctional Analysis
by - arXiv
Notes from a course which covered themes in functional analysis and operator theory, with an emphasis on topics of special relevance to such applications as representation theory, harmonic analysis, mathematical physics, and stochastic integration.
(13580 views)
Book cover: Basic Analysis Gently Done: Topological Vector SpacesBasic Analysis Gently Done: Topological Vector Spaces
by - King's College, London
These notes are based on lectures given as part of a mathematics MSc program. The approach here is to discuss topological vector spaces - with normed spaces considered as special cases. Contents: Topological Spaces; Nets; Product Spaces; etc.
(11961 views)