**Super Linear Algebra**

by W. B. V. Kandasamy, F. Smarandache

**Publisher**: InfoQuest 2008**ISBN/ASIN**: 1599730650**ISBN-13**: 9781599730653**Number of pages**: 293

**Description**:

In this book, the authors introduce the notion of Super linear algebra and super vector spaces using the definition of super matrices defined by Horst (1963). This book expects the readers to be well-versed in linear algebra. Many theorems on super linear algebra and its properties are proved. Some theorems are left as exercises for the reader.

Download or read it online for free here:

**Download link**

(3.7MB, PDF)

## Similar books

**Special Set Linear Algebra and Special Set Fuzzy Linear Algebra**

by

**W. B. V. Kandasamy, F. Smarandache, K. Ilanthenral**-

**CuArt**

Special Set Linear Algebras introduced by the authors in this free book is an extension of Set Linear Algebras, which are the most generalized form of linear algebras. These structures can be applied to multi-expert models.

(

**9165**views)

**Linear Algebra, Infinite Dimensions, and Maple**

by

**James V. Herod**-

**Georgia Tech**

These notes are about linear operators on Hilbert Spaces. The text is an attempt to provide a way to understand the ideas without the students already having the mathematical maturity that a good undergraduate analysis course could provide.

(

**10938**views)

**The Hermitian Two Matrix Model with an Even Quartic Potential**

by

**M. Duits, A.B.J. Kuijlaars, M. Yue Mo**-

**American Mathematical Society**

The authors consider the two matrix model with an even quartic potential and an even polynomial potential. The main result is the formulation of a vector equilibrium problem for the limiting mean density for the eigenvalues of one of the matrices.

(

**3503**views)

**Linear Algebra Review and Reference**

by

**Zico Kolter**-

**Stanford University**

From the tabble of contents: Basic Concepts and Notation; Matrix Multiplication; Operations and Properties; Matrix Calculus (Gradients and Hessians of Quadratic and Linear Functions, Least Squares, Eigenvalues as Optimization, etc.).

(

**16188**views)