**Homogeneous Spaces and Equivariant Embeddings**

by Dmitri A. Timashev

**Publisher**: arXiv 2006**Number of pages**: 250

**Description**:

This is a monograph on homogeneous spaces of algebraic groups and their equivariant embeddings. Some results are supplied with proofs, while the other are cited with references to the original papers. Starting with basic properties of algebraic homogeneous spaces, the author focuses on homogeneous spaces of reductive groups and introduces two invariants: complexity and rank. He considers the Luna-Vust theory of equivariant embeddings, paying attention to the case of complexity not greater than one.

Download or read it online for free here:

**Download link**

(2.3MB, PDF)

## Similar books

**An Introduction to Complex Algebraic Geometry**

by

**Chris Peters**-

**Institut Fourier Grenoble**

This is an advanced course in complex algebraic geometry presupposing only some familiarity with theory of algebraic curves or Riemann surfaces. The goal is to understand the Enriques classification of surfaces from the point of view of Mori-theory.

(

**7774**views)

**From D-modules to Deformation Quantization Modules**

by

**Pierre Schapira**-

**UPMC**

The aim of these lecture notes is first to introduce the reader to the theory of D-modules in the analytical setting and also to make a link with the theory of deformation quantization (DQ for short) in the complex setting.

(

**4525**views)

**Current Topics in Complex Algebraic Geometry**

by

**Herbert Clemens, János Kollár**-

**Cambridge University Press**

The 1992/93 year at the Mathematical Sciences Research Institute was devoted to Complex Algebraic Geometry. This volume collects articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change.

(

**11243**views)

**Abelian Varieties**

by

**J. S. Milne**

Introduction to both the geometry and the arithmetic of abelian varieties. It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves Mordell's Conjecture.

(

**9682**views)