**The Convenient Setting of Global Analysis**

by Andreas Kriegl, Peter W. Michor

**Publisher**: American Mathematical Society 1997**ISBN/ASIN**: 0821807803**ISBN-13**: 9780821807804**Number of pages**: 624

**Description**:

This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. Many applications are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.

Download or read it online for free here:

**Download link**

(4MB, PDF)

## Similar books

**Notes on Symmetric Spaces**

by

**Jonathan Holland, Bogdan Ion**-

**arXiv**

Contents: Affine connections and transformations; Symmetric spaces; Orthogonal symmetric Lie algebras; Examples; Noncompact symmetric spaces; Compact semisimple Lie groups; Hermitian symmetric spaces; Classification of real simple Lie algebras.

(

**7725**views)

**Tight and Taut Submanifolds**

by

**Thomas E. Cecil, Shiing-shen Chern**-

**Cambridge University Press**

Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.

(

**10386**views)

**Projective and Polar Spaces**

by

**Peter J. Cameron**-

**Queen Mary College**

The author is concerned with the geometry of incidence of points and lines, over an arbitrary field, and unencumbered by metrics or continuity (or even betweenness). The treatment of these themes blends the descriptive with the axiomatic.

(

**10885**views)

**Lectures on Exterior Differential Systems**

by

**M. Kuranishi**-

**Tata Institute of Fundamental Research**

Contents: Parametrization of sets of integral submanifolds (Regular linear maps, Germs of submanifolds of a manifold); Exterior differential systems (Differential systems with independent variables); Prolongation of Exterior Differential Systems.

(

**10523**views)