**Correlation and Causality**

by David A. Kenny

**Publisher**: John Wiley & Sons Inc 1979**ISBN/ASIN**: 0471024392**ISBN-13**: 9780471024392**Number of pages**: 353

**Description**:

This text is a general introduction to the topic of structural analysis. It is an introduction because it presumes no previous acquaintance with causal analysis. It is general because it covers all the standard, as well as a few nonstandard, statistical procedures. Since the topic is structural analysis, and not statistics, very little discussion is given to the actual mechanics of estimation.

Download or read it online for free here:

**Download link**

(2.1MB, PDF)

## Similar books

**Introduction to Probability Theory and Statistics for Linguistics**

by

**Marcus Kracht**-

**UCLA**

Contents: Basic Probability Theory (Conditional Probability, Random Variables, Limit Theorems); Elements of Statistics (Estimators, Tests, Distributions, Correlation and Covariance, Linear Regression, Markov Chains); Probabilistic Linguistics.

(

**10497**views)

**Introduction to Probability, Statistics, and Random Processes**

by

**Hossein Pishro-Nik**-

**Kappa Research, LLC**

This book introduces students to probability, statistics, and stochastic processes. It can be used by both students and practitioners in engineering, sciences, finance, and other fields. It provides a clear and intuitive approach to these topics.

(

**11920**views)

**Applied Nonparametric Regression**

by

**Wolfgang HÃ¤rdle**-

**Cambridge University Press**

Nonparametric regression analysis has become central to economic theory. Hardle, by writing the first comprehensive and accessible book on the subject, contributed enormously to making nonparametric regression equally central to econometric practice.

(

**23143**views)

**Lectures on Stochastic Analysis**

by

**Thomas G. Kurtz**-

**University of Wisconsin**

Covered topics: stochastic integrals with respect to general semimartingales, stochastic differential equations based on these integrals, integration with respect to Poisson measures, stochastic differential equations for general Markov processes.

(

**11533**views)