Geometry Unbound
by Kiran S. Kedlaya
2006
Number of pages: 142
Description:
The original text underlying this book was a set of notes for the Math Olympiad Program, the annual summer program to prepare U.S. high school students for the International Mathematical Olympiad. The original notes were intended to bridge the gap between the knowledge of Euclidean geometry of American IMO prospects and that of their counterparts from other countries. They included a large number of challenging problems culled from Olympiad-level competitions from around the world. In revising the old text, author attempted to usher the reader from Euclidean geometry to the gates of "geometry" as the term is defined by modern mathematicians, using the solving of routine and nonroutine problems as the vehicle for discovery.
Download or read it online for free here:
Download link
(0.6MB, PDF)
Similar books
by P. Samuel - Tata Institute Of Fundamental Research
The aim of this text is to give a proof, due to Hans Grauert, of an analogue of Mordell's conjecture. Contents: Introduction; Algebro-Geometric Background; Algebraic Curves; The Theorem of Grauert (Mordell's conjecture for function fields).
(10122 views)
by J.S. Milne
These notes are an introduction to the theory of algebraic varieties. In contrast to most such accounts they study abstract algebraic varieties, not just subvarieties of affine and projective space. This approach leads naturally to scheme theory.
(16235 views)
by Yuriy Drozd
From the table of contents: Affine Varieties; Ideals and varieties. Hilbert's Basis Theorem. Regular functions and regular mappings. Projective and Abstract Varieties; Dimension Theory; Regular and singular points; Intersection theory.
(12689 views)
by J.M. Landsberg - arXiv
This is survey of recent developments in, and a tutorial on, the approach to P v. NP and related questions called Geometric Complexity Theory. The article is written to be accessible to graduate students. Numerous open questions are presented.
(9212 views)