Logo

Elementary Topology by O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov

Large book cover: Elementary Topology

Elementary Topology
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821845063
ISBN-13: 9780821845066
Number of pages: 400

Description:
This textbook on elementary topology contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment centered at the notions of fundamental group and covering space. With almost no prerequisites (except real numbers), the book can serve as a text for a course on general and beginning algebraic topology.

Home page url

Download or read it online for free here:
Download link
(1.8MB, PDF)

Similar books

Book cover: A Topology PrimerA Topology Primer
by - Technische Universit├Ąt Kaiserslautern
The purpose of this text is to make familiar with the basics of topology, to give a concise introduction to homotopy, and to make students familiar with homology. Readers are expected to have knowledge of analysis and linear algebra.
(9831 views)
Book cover: Manifold TheoryManifold Theory
by - UCLA
These notes are a supplement to a first year graduate course in manifold theory. These are the topics covered: Manifolds (Smooth Manifolds, Projective Space, Matrix Spaces); Basic Tensor Analysis; Basic Cohomology Theory; Characteristic Classes.
(6908 views)
Book cover: A Concise Course in Algebraic TopologyA Concise Course in Algebraic Topology
by - University Of Chicago Press
This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics. Most chapters end with problems that further explore and refine the concepts presented.
(15488 views)
Book cover: Lectures on Introduction to Algebraic TopologyLectures on Introduction to Algebraic Topology
by - Tata Institute of Fundamental Research
These notes were intended as a first introduction to algebraic Topology. Contents: Definition and general properties of the fundamental group; Free products of groups and their quotients; On calculation of fundamental groups; and more.
(7000 views)