Higher Operads, Higher Categories
by Tom Leinster
Publisher: arXiv 2003
ISBN/ASIN: 0521532159
ISBN-13: 9780521532150
Number of pages: 410
Description:
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. This is the first book on the subject and lays its foundations.
Download or read it online for free here:
Download link
(3MB, PDF)
Similar books
Category Theory
- Wikibooks
This book is an introduction to category theory, written for those who have some understanding of one or more branches of abstract mathematics, such as group theory, analysis or topology. It contains examples drawn from various branches of math.
(11351 views)
- Wikibooks
This book is an introduction to category theory, written for those who have some understanding of one or more branches of abstract mathematics, such as group theory, analysis or topology. It contains examples drawn from various branches of math.
(11351 views)
Abstract and Concrete Categories: The Joy of Cats
by Jiri Adamek, Horst Herrlich, George Strecker - John Wiley & Sons
A modern introduction to the theory of structures via the language of category theory, the emphasis is on concrete categories. The first five chapters present the basic theory, while the last two contain more recent research results.
(18863 views)
by Jiri Adamek, Horst Herrlich, George Strecker - John Wiley & Sons
A modern introduction to the theory of structures via the language of category theory, the emphasis is on concrete categories. The first five chapters present the basic theory, while the last two contain more recent research results.
(18863 views)
Higher Topos Theory
by Jacob Lurie - Princeton University Press
Jacob Lurie presents the foundations of higher category theory, using the language of weak Kan complexes, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.
(12515 views)
by Jacob Lurie - Princeton University Press
Jacob Lurie presents the foundations of higher category theory, using the language of weak Kan complexes, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.
(12515 views)
Functors and Categories of Banach Spaces
by Peter W. Michor - Springer
The aim of this book is to develop the theory of Banach operator ideals and metric tensor products along categorical lines: these two classes of mathematical objects are endofunctors on the category Ban of all Banach spaces in a natural way.
(9893 views)
by Peter W. Michor - Springer
The aim of this book is to develop the theory of Banach operator ideals and metric tensor products along categorical lines: these two classes of mathematical objects are endofunctors on the category Ban of all Banach spaces in a natural way.
(9893 views)