**The Homology of Iterated Loop Spaces**

by F. R. Cohen, T. J. Lada, P. J. May

**Publisher**: Springer 2009**ISBN/ASIN**: 354007984X**ISBN-13**: 9783540079842**Number of pages**: 490

**Description**:

This volume is a collection of five papers. The first four together give a thorough treatment of homology operations and of their application to the calculation of, and analysis of internal structure in, the homologies of various spaces of interest. The last studies an up to homotopy notion of an algebra over a monad and the role of this notion in the theory of iterated loop spaces.

Download or read it online for free here:

**Download link**

(15MB, PDF)

## Similar books

**Homotopy Theories and Model Categories**

by

**W. G. Dwyer, J. Spalinski**-

**University of Notre Dame**

This paper is an introduction to the theory of model categories. The prerequisites needed for understanding this text are some familiarity with CW-complexes, chain complexes, and the basic terminology associated with categories.

(

**8372**views)

**Differential Forms and Cohomology: Course**

by

**Peter Saveliev**-

**Intelligent Perception**

Differential forms provide a modern view of calculus. They also give you a start with algebraic topology in the sense that one can extract topological information about a manifold from its space of differential forms. It is called cohomology.

(

**7314**views)

**The Geometry of Iterated Loop Spaces**

by

**J. P. May**-

**Springer**

A paper devoted to the study of iterated loop spaces. Our goal is to develop a simple and coherent theory which encompasses most of the known results about such spaces. We begin with some history and a description of the desiderata of such a theory.

(

**9653**views)

**Notes on the course Algebraic Topology**

by

**Boris Botvinnik**-

**University of Oregon**

Contents: Important examples of topological spaces; Constructions; Homotopy and homotopy equivalence; CW-complexes and homotopy; Fundamental group; Covering spaces; Higher homotopy groups; Fiber bundles; Suspension Theorem and Whitehead product; etc.

(

**9048**views)