Exterior Differential Systems and Euler-Lagrange Partial Differential Equations
by R. Bryant, P. Griffiths, D. Grossman
Publisher: University Of Chicago Press 2008
ISBN/ASIN: 0226077942
ISBN-13: 9780226077949
Number of pages: 219
Description:
The authors present the results of their ongoing development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincaré-Cartan forms. They also cover certain aspects of the theory of exterior differential systems, which provides the language and techniques for the entire study.
Download or read it online for free here:
Download link
(1.6MB, PDF)
Similar books

by Dave Auckly - arXiv
This paper introduced undergraduates to the Atiyah-Singer index theorem. It includes a statement of the theorem, an outline of the easy part of the heat equation proof. It includes counting lattice points and knot concordance as applications.
(7404 views)

by David Hoffman - American Mathematical Society
The wide variety of topics covered make this volume suitable for graduate students and researchers interested in differential geometry. The subjects covered include minimal and constant-mean-curvature submanifolds, Lagrangian geometry, and more.
(9464 views)

by Martin A. Guest - arXiv
This is an introduction to some of the analytic aspects of quantum cohomology. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described without going into the technicalities of a rigorous definition.
(8428 views)

by V. Ovsienko, S. Tabachnikov - Cambridge University Press
This book provides a route for graduate students and researchers to contemplate the frontiers of contemporary research in projective geometry. The authors include exercises and historical comments relating the basic ideas to a broader context.
(15562 views)