**Dynamics in One Complex Variable**

by John Milnor

**Publisher**: Princeton University Press 1991**ISBN/ASIN**: 0691124884**ISBN-13**: 9780691124889**Number of pages**: 146

**Description**:

This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. These lectures are intended to introduce some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Elements of the Theory of Functions of a Complex Variable**

by

**G.E. Fisher, I.J. Schwatt**-

**Philadelphia G.E. Fisher**

Contents: Geometric representation of imaginary quantities; Functions of a complex variable in general; Multiform functions; Integrals with complex variables; General properties of functions; Infinite and infinitesimal values of functions; etc.

(

**6371**views)

**Complex Analysis**

by

**C. McMullen**-

**Harvard University**

This course covers some basic material on both the geometric and analytic aspects of complex analysis in one variable. Prerequisites: Background in real analysis and basic differential topology, and a first course in complex analysis.

(

**11292**views)

**Hyperbolic Functions**

by

**James McMahon**-

**John Wiley & Sons**

College students who wish to know something of the hyperbolic trigonometry, will find it presented in a simple and comprehensive way in the first half of the work. Readers are then introduced to the more general trigonometry of the complex plane.

(

**11544**views)

**Lectures on Meromorphic Functions**

by

**W.K. Hayman**-

**Tata Institue of Fundamental Research**

We shall develop in this course Nevanlinna's theory of meromorphic functions. From the table of contents: Basic Theory; Nevanlinna's Second Fundamental Theorem; Univalent Functions (Schlicht functions, Asymptotic behaviour).

(

**7974**views)